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Abstract—We consider the problem of maximizing the time-
to-first-failure (TTFF), defined as the time till the first node in
the network runs out of battery energy, in energy constrained
broadcast wireless networks. We show that the TTFF crite-
rion, by itself, fails to provide the “ideally optimum” tree and
propose a composite weighted objective function which maxi-
mizes the TTFF and minimizes the sum of transmitter powers.
We then develop a mixed integer linear programming (MILP)
model for solving the joint optimization problem optimally. We
also consider the case of prioritized nodes and show how the
model can be modified to deal with such priorities.

I. Introduction
We consider the problem of maximizing the time-to-

first-failure in energy constrained broadcast wireless net-
works where each node is powered by batteries. In appli-
cations where replacement/maintenance of such batteries
is difficult or infeasible, it is of utmost importance to de-
sign routing protocols which maximize the lifetime of the
network. A metric commonly used to define the lifetime
of a network is the duration of time before any node in the
network runs out of its battery energy. We define this time
to be the time− to− first− failure (TTFF), also known
as system lifetime or network lifetime in the literature.
To the best of our knowledge, this problem was first ad-
dressed by Chang and Tassiulas for an unicast application
[1]. Subsequent research in this area for unicast as well
as multicast applications have been reported in [2], [3], [4]
and [5]. In [8], it is shown that maximization of the TTFF
for a broadcast application can be solved optimally by a
greedy algorithm in polynomial time.

In this paper, we first illustrate with an example that
simply optimizing the TTFF criterion may not provide
the best possible solution. This motivates the use of a
composite objective function involving the the sum of the
transmitter powers. We then present a mixed integer lin-
ear programming (MILP) model for solving the joint op-
timization problem optimally. The MILP model is based
on the well-studied single-origin multiple-destination un-
capacitated flow problem, tailored to reflect the inherently
broadcast nature of the wireless medium. Finally, we con-
sider the case of prioritized nodes and show how the model
can be modified to deal with such priorities.
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II. Network Model
We assume a fixed N -node network with a specified

source node which has to broadcast a message to all other
nodes in the network. Any node can be used as a relay
node to reach other nodes in the network. All nodes are
assumed to have omni-directional antennas, so that if node
i transmits to node j, all nodes closer to i than j will also
receive the transmission (provided line-of-sight exists).

We assume that, for a transmission from node i to j,
the received signal power at j varies as d−α

ij , where

dij =
[
(xi − xj)2 + (yi − yj)2

]1/2

is the Euclidean distance between nodes i and j, {(xi, yi)}
are the coordinates of node i and α (typically in the range
2 ≤ α ≤ 4) is the channel loss exponent. Consequently, the
transmitter power at i necessary to support the link i → j,
Pij , is proportional (accounting for fading and antenna
gain factors) to dα

ij . Without any loss of generality, we set
the proportionality constant to be equal to 1 and therefore:

Pij = dα
ij (1)

The power matrix of a network, P, is defined to be an
N×N symmetric matrix whose (i, j)th element represents
the power required to support the link i → j, Pij .

Finally, we assume that power expenditures due to sig-
nal reception and processing are negligible compared to
signal transmission and hence the lifetime is determined
solely by the choice of transmitter powers and residual en-
ergy levels of the nodes.

III. Problem Statement
Let E(t) be a vector of node residual energies at time t,

the ith element of E(t) representing the residual energy of
node i at time t, and Y be a vector of node transmission
powers. The element Yi represents the transmitter power
level of node i. We assume that each node has a constraint
on maximum transmitter power, denoted by Y max

i . That
is:

Yi ≤ Y max
i : ∀i ∈ N (2)

where N is the set of all nodes in the network.
Also, let D the set of destination nodes and E the set

of all directed edges1 and D the set of destination nodes,
1In this paper, we assume that all edges are directed. The notation

(i → j) will be used to denote a directed edge from node i to j. The
notation (i, j) will be used to refer to the node pair.



D ⊆ {N \ source}. Let the cardinality of these sets be
N , E and D respectively; i.e., N = |N |, E = |E| and
D = |D|. Using the transmitter power constraint, the set
of all edges, E , is given by:

E = {(i → j) : (i, j) ∈ N , i �= j,Pij ≤ Y max
i , j �= source}

(3)

The third condition in the right hand side of (3) specifies
the set of nodes reachable by a direct transmission from
any transmitting node depending on its power constraint.
The last condition reflects that no transmitting node needs
to reach the source node.

Defining Li(t)
�= Ei(t)/Yi to be the lifetime of node i,

the problem of maximizing the TTFF can be written as:

maximize {mini∈NLi(t)} (4)

The objective function in (4) is to be optimized subject to
the following constraints:

1) All nodes, other than the source, must be reached,
either actually or implicitly2.

2) The source node must reach at least one other node.
3) The tree must be connected; i.e., there must be di-

rected paths from the source to all destination nodes,
possibly involving other intermediate nodes.

4) The tree must not have any cycles.
The vector L(t) �= {Li(t) : ∀i ∈ N} is the node lifetime
vector at time t. Note that the value of the expression
within curly braces in (4) is dependent on the time index t
and hence, strictly speaking, should be termed residual−
time − to − first − failure. However, we will refer to it
simply as the time-to-first-failure, implicitly recognizing its
dependence on the time origin t. Accordingly, henceforth
in this paper, we will simply use the notations Ei and Li

instead of Ei(t) and Li(t).
Assuming that all nodes in the network have omni-

directional antennas, a transmission from node i to node j
would also be received by all nodes geometrically closer
to i than j. Let S be the set of nodes that are geo-
metrically closer to i than j (⇒ Pij > Pik : ∀k ∈ S).
Nodes that belong in S are said to receive the transmis-
sion from i implicitly (in the sense that no additional
cost is incurred to reach them) and the set of transmis-
sions {i → k : ∀k ∈ S} are referred to as implicit
transmissions. The transmission i → j is referred to
as an actual transmission.

Let {Xij : (i → j) ∈ E} be a set of binary variables
such that Xij = 1 if the transmission i → j is used in the
optimum tree and 0 otherwise. Following our discussion
in the previous paragraph, we can write:

Yi = maxj{XijPij : j �= i} (5)

where Xij = 1 if node j is reached from node i (actually
or implicitly) and 0 otherwise. Note that equation (5) is a

2Note that the possibility of reaching a node implicitly is a con-
sequence of the inherently broadcast nature of the wireless network
and our assumption of omni-directional antennas.

direct consequence of our assumption of omni-directional
antennas and implies that the cost of spanning in multiple
nodes from node i is simply the cost incurred in reaching
the farthest node.

We now express the objective function in (4) as a mini-
max optimization problem as shown below:

maximize (mini Li)
= maximize (mini Ei/Yi)
= minimize (maxi Yi/Ei) (6)
= minimize (maxi [maxj (PijXij) /Ei]) (7)
= minimize (maxi,j [PijXij/Ei]) (8)
= minimize σ (9)

where

σ = maxi,j (PijXij/Ei) = 1/τ (10)

and τ is the TTFF.
We conclude this section with definitions of critical node

and critical transmission. For a given connection tree,
T , we define its critical node to be the node whose residual
lifetime is equal to the TTFF of the tree. That is:

Critical node = argmini (Ei/Yi) (11)

Note that for any non-transmitting node, Yi = 0, and
hence the residual lifetime of that node is ∞.

A transmission (i → j) is defined to be the critical trans-
mission in a tree if:

Ei/Pij = TTFF �= mini (Ei/Yi) (12)

In the next section, we illustrate with an example the in-
adequacy of the TTFF criterion when optimized singly.
This will motivate the need for a joint objective function
involving the sum of transmitter powers. In Section V, we
develop a mixed integer linear programming model for the
joint optimization problem.

IV. Inadequacy of the TTFF criterion
Consider the 6-node network and the broadcast tree in

Figure 1a. Assuming α = 2, the power matrix of the
network is:

P =




0 14.86 9.31 6.33 7.01 1.76
14.86 0 23.18 4.39 4.58 6.46
9.31 23.18 0 7.41 24.32 11.65
6.33 4.39 7.41 0 7.11 2.73
7.01 4.58 24.32 7.11 0 2.43
1.76 6.46 11.65 2.73 2.43 0


 (13)

Assume that the residual energy of all nodes is 10. The
residual lifetime vector of the nodes for the tree in Figure
1a is: L1 = [∞, 1.55,∞, 1.35,∞, 5.69]. The lifetimes of
nodes 1, 3 and 5 are ∞ since they are non-transmitting
nodes in the tree. Node 4 is the critical node in the tree
and 4 → 3 is the critical transmission.

Now consider the broadcast tree in Figure 1b.
The residual lifetime vector in this case is: L2 =



[∞, 2.28,∞, 1.35,∞,∞]. The TTFF of this tree is iden-
tical to that of Figure 1a. However, note that the life-
time of node 2 is higher (2.28, as compared to 1.55) than
its lifetime in Figure 1a. Also, the lifetime of node 6
is now ∞, compared to 5.69 in Figure 1a, since it is a
non-transmitting node. Clearly, for the same TTFF, this
broadcast tree is better than that shown in Figure 1a.

In general, given two trees Tm and Tn with the same
TTFF, Tm is considered better (“leaner”) than Tn if:

• there is at least one node in Tm whose residual lifetime
is greater in Tm than in Tn, and,

• the residual lifetimes of all other nodes in Tm are at
least as high as in Tn.

One way of obtaining a “lean” optimum solution is to con-
sider a joint optimization function of the form:

minimize σ + β

(
N∑

i=1

Yi

)
(14)

where
∑N

i=1 Yi is the sum of transmitter powers, σ is the
inverse of the TTFF (10) and β is a suitably chosen non-
negative penalty factor. Alternately, we can optimize a
convex combination of the two parameters:

minimize (1 − β)σ + β

(
N∑

i=1

Yi

)
(15)

It can be easily verified that the tree in Figure 1b is char-
acterized by a smaller total transmitter power, 11.80 units
(P24 + P43), compared to the tree in Figure 1a which uses
a total transmitter power of 15.63 units (P26 +P61 +P43).

Note that for β = 0, an optimal polynomial time algo-
rithm exists, as discussed in [8]. For any β > 0, however,
it is unlikely that any optimal polynomial time algorithm
exists, since the problem of minimizing the sum of trans-
mitter powers has been shown to be NP-complete [9].

Fig. 1a. The residual energy of each of the nodes is 10. The
power matrix of the network is given in (13). TTFF of the broad-
cast tree {2 → 6, 6 → 1, 4 → 3} is 1.35, node 4 being the crit-
ical node. The node lifetime vector coresponding to the tree is:
[∞,1.55,∞, 1.35,∞, 5.69]. The lifetimes of nodes 1, 3 and 5 are
∞ since they are non-transmitting nodes in the tree. Note that the
transmissions 2 → 4 and 2 → 5 are implicit, since nodes 4 and 5 are
nearer to 2 than 6.

Fig. 1b. An alternate broadcast tree with the same TTFF, 1.35,
as in Figure 1a. In this tree, the transmissions 4 → 1, 4 → 5
and 4 → 6 are implicit. The node lifetime vector in this case is:
[∞,2.28,∞, 1.35,∞,∞]. Note that the lifetime of node 2 is higher
(2.28, as compared to 1.55) than its lifetime in Figure 1a. Also, the
lifetime of node 6 is now ∞, compared to 5.69 in Figure 1a, since it is
a non-transmitting node. Clearly, for the same TTFF, this broadcast
tree is better than that shown in Figure 1a.

V. MILP Model
We now develop a mixed integer linear programming

model of the joint optimization problem involving the
TTFF criterion and the sum of the transmitter powers.
The objective function can be either of the two forms
shown in (14) and (15).

Let {Fij : ∀(i → j) ∈ E} be a set of flow variables (Fij

represents the flow from node i to node j), with E de-
fined as in (3). The general multicast problem can be in-
terpreted as a single-origin multiple-destination uncapaci-
tated flow problem, with the source (the supply node) hav-
ing D units of supply and the destination nodes (demand
nodes) having one unit of demand each. For other nodes,
the net in-flow must equal the net out-flow, since they
serve only as relay nodes. For example, the broadcast tree
in Figure 1b can be represented using the following flow
matrix:

F =




0 0 0 0 0 0
0 0 0 5 0 0
0 0 0 0 0 0
1 0 1 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0




(16)

Similarly, if the same tree is used for multicasting to des-
tination nodes 3 and 6, we can write the following flow
matrix:

F =




0 0 0 0 0 0
0 0 0 2 0 0
0 0 0 0 0 0
0 0 1 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0




(17)

At a conceptual level, the flow model can be viewed as a
token allocation scheme where the source node generates



as many tokens as there are destination nodes and distrib-
utes them along the “most efficient” tree such that each
destination node gets to keep one token each.

The single-origin multiple-destination flow problem dis-
cussed above can be solved using the usual conservation
of flow constraints as shown below (see for example [10]
or [11]):

N∑
j=1

Fij = D; i = source, (i → j) ∈ E (18)

N∑
j=1

Fji −
N∑

j=1

Fij = 1; ∀i ∈ D, (i → j) ∈ E (19)

N∑
j=1

Fji −
N∑

j=1

Fij = 0; ∀i �∈ D, i �= source, (i → j) ∈ E
(20)

Having set up the flow equations, we now have to write
down constraints linking the flow variables to the power
variables, {Yi}. We do this in two stages. In the first stage,
we couple the flow variables and the indicator variables
{Xij} and in the next stage, we link the {Xij} variables to
the power variables. Recall from Section III that Xij = 1
if the edge i → j appears in the optimum solution (either
as an actual transmission or as an implicit transmission)
and 0 otherwise.

The set of constraints couples the flow variables and the
Xij variables:

D · Xij − Fij ≥ 0; ∀(i → j) ∈ E (21)

where D is the number of destination nodes. Note that
(21) ensures that “Xij = 1 if Fij > 0”. The coefficient
of Xij in (21) is due to the fact that the maximum flow
out of any node on a single link is equal to the number
of destination nodes. Equation (21), however, leaves open
the possibility of Xij being equal to 1 for Fij = 0. We
show later that, for β > 0 (equations 14 and 15), doing
so would unnecessarily increase the cost of the optimum
solution and therefore this possibility can be discounted.
For the flow matrix in (17), X24 = X43 = X46 = 1, the
rest of the variables being 0.

Next, we write down constraints linking the Xij vari-
ables to the power variables. As discussed in Section III
(see eqn. 5), for an omni-directional antenna system, the
cost of spanning in multiple nodes from node i is simply
the cost incurred in reaching the farthest node. This con-
dition can be expressed as:

Yi − PijXij ≥ 0; ∀i ∈ N , ∀(i → j) ∈ E (22)

In order to relate the inverse TTFF parameter, σ, to the
power variables, we note that σ = maxi Yi/Ei (compare
equations 6 and 9). As in (22), this condition can be ex-
pressed as:

σ − Yi/Ei ≥ 0; ∀i ∈ N (23)

It is now clear that for β > 0, if there is no flow out of
node i (i.e.,

∑
j Fij = 0), setting Xij = 1 would result in

a positive value for Yi and thereby unnecessarily increase
the cost of the optimal solution.

So far, we have implicitly assumed that the residual life-
times of all transmitting nodes are greater than the mul-
ticast duration3. In other words, if L is the total num-
ber of bits to be transmitted during the session and D
is the datarate in bps (assumed uniform throughout the
network), we have assumed that:

Ei/Yi ≥ L/D ⇐⇒ Yi/Ei ≤ D/L (24)

Constraints of the form (24) can be explicitly added to the
model to ensure that all nodes choose transmitter power
levels such that their residual lifetimes are greater than or
equal to the multicast session duration (L/D).

The final set of constraints express the integrality of
the Xij variables and non-negativity of the Fij and Yi

variables.

Xij ≥ 0, integer; ∀i ∈ N (25)
Fij ≥ 0; ∀(i → j) ∈ E (26)
Yi ≥ 0; ∀i ∈ N (27)

Figure 2 summarizes the MILP model. We note that the
number of integer variables is equal to E while the number
of continuous variables is equal to E + N . The number of
constraints is equal to 2E + 3N .

VI. Dealing with prioritized nodes
The MILP model we discussed assumes that all nodes

enjoy equal priority in the network. We now consider the
case where nodes may have unequal priorities, e.g., de-
pending on their location in the grid or on their residual
energies. Let wi be the priority associated with node i,
0 < wi ≤ 1. The effective lifetime4 of node i, Leff

i , is now
defined as:

Leff
i = Ei/wiYi (28)

Consequently, we redefine the inverse TTFF parameter as
follows (instead of eqn. 10):

σ = maxi (wiYi/Ei) = 1/τ (29)

The above equation can be expressed as the following set
of linear constraints:

σ − wiYi/Ei ≥ 0; ∀i ∈ N (30)

Solving the optimization problem with (30) instead of (23)
yields a node prioritized optimum solution. We illustrate
the concept of node weighting with an example.

Consider the 3-node network in Figure 3. Assume
PAB = 2, PBC = 1.5, PAC = 5, EA = 10 and EB = 5.

3We assume static multicasting; i.e., the same tree is used for the
entire multicast duration.

4Note that the actual lifetime of node i is still given by Ei/Yi. The
notion of effective lifetime is used only to guide the optimization
process to choose routes avoiding the nodes accorded the highest
priorities, as illustrated subsequently.



minimize σ + β

(
N∑

i=1

Yi

)

or

minimize (1 − β)σ + β

(
N∑

i=1

Yi

)

subject to:

σ − Yi/Ei ≥ 0; ∀i ∈ N
Yi/Ei ≤ D/L; ∀i ∈ N

Yi − PijXij ≥ 0; ∀i ∈ N , ∀(i → j) ∈ E
D · Xij − Fij ≥ 0; ∀(i → j) ∈ E

N∑
j=1

Fij = D; i = source, (i → j) ∈ E

N∑
j=1

Fji −
N∑

j=1

Fij = 1; ∀i ∈ D, (i → j) ∈ E

N∑
j=1

Fji −
N∑

j=1

Fij = 0; ∀i �∈ D, i �= source, (i → j) ∈ E

Xij ≥ 0, integer; ∀(i → j) ∈ E
Fij ≥ 0; ∀(i → j) ∈ E
Yi ≥ 0; ∀i ∈ N

Fig. 2. MILP model for the joint inverse TTFF and sum of trans-
mitter powers minimization problem

Fig. 3. An example 3-node network.

Let wA = wB = 1. Under these conditions, the optimal
TTFF broadcast tree, considering node A to be the source,
is {A → B, B → C}, with a TTFF of 10/3 (node B is the
critical node). If, however, wA = 0.5 and wB = 1 (i.e., it is
more important to preserve node B than A), it can be eas-
ily verified that the optimization process yields the broad-
cast tree {A → C}, with node B reached implicitly. Note
that the effective lifetime of node A, as computed by the
optimization process, is EA/wAPAC = 10/(0.5 × 5) = 4
but its actual lifetime is EA/PAC = 10/5 = 2. This exam-
ple illustrates how node B can be preserved, at the expense
of node A, by assigning suitable node weights.

VII. Conclusion
In this paper, we have considered the problem of max-

imizing the time-to-first-failure in broadcast wireless net-
works. First, we showed that maximizing the TTFF (or,

minimizing the inverse TTFF) criterion, by itself, may not
yield the best possible solution. This motivated us to to
consider a joint optimization problem involving the sum
of transmitter powers. We presented a mixed integer lin-
ear programming model for solving the joint optimization
problem. We are using the model for benchmarking the
performance of fast sub-optimal heuristic algorithms, work
on which is currently ongoing. These will be reported in a
subsequent paper.
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